Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362114

RESUMO

Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.


Assuntos
Vesículas Extracelulares , Linfoma Difuso de Grandes Células B , Humanos , Proteoma , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/patologia , Vesículas Extracelulares/patologia
2.
Cancers (Basel) ; 14(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35805031

RESUMO

(1) Background: Extracellular vesicles (EVs) have emerged as crucial players in the communication between cells in both physiological and pathological scenarios. The functions of EVs are strongly determined by their molecular content, which includes all bioactive molecules, such as proteins, lipids, RNA, and, as more recently described, double-stranded DNA. It has been shown that in oncological settings DNA associated with EVs (EV-DNA) is representative of the genome of parental cells and that it reflects the mutational status of the tumor, gaining much attention as a promising source of biomarker mutant DNA. However, one of the challenges in studies of EV-DNA is the lack of standardization of protocols for the DNA extraction from EVs, as well as ways to assess quality control, which hinders its future implementation in clinics. (2) Methods: We performed a comprehensive comparison of commonly used approaches for EV-DNA extraction by assessing DNA quantity, quality, and suitability for downstream analyses. (3) Results: We here established strategic points to consider for EV-DNA preparation for mutational analyses, including qPCR and NGS. (4) Conclusions: We put in place a workflow that can be applied for the detection of clinically relevant mutations in the EV-DNA of cancer patients.

3.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233545

RESUMO

Acellular bronchoalveolar lavage (BAL) proteomics can partially separate lung cancer from non-lung cancer patients based on principal component analysis and multivariate analysis. Furthermore, the variance in the proteomics data sets is correlated mainly with lung cancer status and, to a lesser extent, smoking status and gender. Despite these advances BAL small and large extracellular vehicles (EVs) proteomes reveal aberrant protein expression in paracrine signaling mechanisms in cancer initiation and progression. We consequently present a case-control study of 24 bronchoalveolar lavage extracellular vesicle samples which were analyzed by state-of-the-art liquid chromatography-mass spectrometry (LC-MS). We obtained evidence that BAL EVs proteome complexity correlated with lung cancer stage 4 and mortality within two years´ follow-up (p value = 0.006). The potential therapeutic target DNMT3B complex is significantly up-regulated in tumor tissue and BAL EVs. The computational analysis of the immune and fibroblast cell markers in EVs suggests that patients who deceased within the follow-up period display higher marker expression indicative of innate immune and fibroblast cells (four out of five cases). This study provides insights into the proteome content of BAL EVs and their correlation to clinical outcomes.

4.
Front Biosci (Landmark Ed) ; 25(3): 398-436, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585894

RESUMO

Through lateral transfer, extra-cellular vesicles (EVs) transport their DNA, miRNA, mRNA and proteins such as enzymes mediating drug resistance, transporters as well as growth factors to neighboring cells. By virtue of this horizontal transfer, EVs potentially regulate cell growth, migration, angiogenesis and metastasis and increase tissue permeability in cancer. Furthermore, EVs regulate immune factors and allow the tumor cells to evade immune recognition and cell death. To explore if the proteomes of exosomes support functional transfer of cancer hallmarks, in this meta-analysis, we compared EVs and whole cell proteomes from the NCI-60 human tumor cell line panel. We observed a subgroup of proteins in each cancer hallmark signature as highly abundant and consistently expressed in EVs from all cell lines. Among these were oncoproteins frequently targeted in cancer therapies whose presence on EVs could potentially render therapies less effective by serving as decoys.


Assuntos
Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
5.
Front Biosci (Landmark Ed) ; 17(4): 1362-88, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201809

RESUMO

Human cells are constantly exposed to DNA damage. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum (XP), ataxia-telangiectasia (AT) and Fanconi anemia (FA). This review focuses on the historical discoveries related with these three diseases and describes their impact on the understanding of DNA repair mechanisms and the causes of human cancer. As deficiencies in DNA repair are also often related with progeria symptoms, unrepaired damage and aging are somehow related. Several other pathologies associated with DNA repair defects, genetic instability and increased cancer risk are also discussed. In fact, studies with cells from these many syndromes have helped in understanding important levels of protection against cancer and aging, although little help has actually been conferred to the patients in terms of therapy. Finally, the recent advances in combined basic and translational research on DNA repair and chemotherapy are presented.


Assuntos
Transformação Celular Neoplásica , Reparo do DNA , Genoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...